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1. INTRODUCTION

Korovkin’s well-known theorem [10, pp. 14-17] asserts that the conver-
gence of a sequence of positive linear operators on Clg, b] to itself, to the
identity, depends only on its convergence on three test functions. Several
authors {2, 3, 8] gave the rate of convergence in terms of the moduli of
continuity of the function approximated and the rate of convergence on three
test functions. It is well known that for positive linear operators the order of
magnitude of the rate of convergence improves with the smoothness of the
functions up to C?a, b}, whereas it does not improve with smoother classes
of functions. To generalize the above and discuss rates of convergence that
depend on higher degrees of smoothness, one has to consider nonpositive
operators and more test functions.

A linear functional on Cla, b], L,(f, x) can be written as

Lifw) = [ [ duana(t)  where o, )eBV.a bl (LY

The oscillation bound, 7,(x) or ,(S), is given by:

,(x) = inf{r | a, (2} is monotonic in {a, bP\[x — =, x + 7]}; (
7(S) = sup{r,(x) | x € S} 5 C [a, b].
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To iliustrate our result we present the following special but quite applicable
case:

THeOREM 1.1. Suppose: (1) wu(x)i=0,..., 2m is an extended Tchebicheff
system (E.T.S.) of order 2m -+ 1 [9, p. 6];
23
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(2) L,(f, x) are linear bounded operators on Cla, b] satisfying
I Lot > ) — u(N < 07" = o(1)  n—> o0;
() 7.(la, b)) given by (1.3) satisfies 7,([a, b]) < o,; then
| La(fs ) — FON < KyoR" + Kowsn(f, 00) (1.4
where wy,(f, h) is the 2mth modulus of smoothness.

One should note that for periodic convolution operators the same crucial
quantity of 7,(x) was achieved by Butzer, Nessel, and Sherer [1] while getting
lower estimates, i.e., in a direction opposite to that of the present paper.

2. THE MAIN RESULT

In this section we state our main result and derive from it the applicable
Theorem 1.1. We recall that uy(x),..., #s,(x) is an E.T.S. of order 2m + 1
(see Ref. 9, p. 6) if u(x)eC?™a,b], xo < - < x5 < Xy < < Xop
and det || w;; || > 0 where

ux;) if x5 X

Wi =3 (®) : . :
;- (X;) if X=X X;7 X 51.

THEOREM 2.1. Suppose: (1) ux) 0 <i < 2m is an E.T.S. of order
2m + 1 on [a, b];

(2) L. (f, x) is a linear functional on Cla, b} and 1,(x) = , given by (1.2);

(3) | La(u;, x) — ux)| < ¢, 0 << i < 2m; then for every fe Cla, b] and
0 < h <min(b — x, x — a) we have

| La(fs X) — FO < G 4 L Lol + B4

+ (B0 || L) wandf, )
+ Co(hy + 72" | LD S @.1)

where || L(x)|| is the norm of (1, 1) as a functional.

Theorem 1.1 follows Theorem 2.1 if we recall that || L,(x)| <| L, | and
substitute i, = 0™, 7, < Ao, (both for all xe[a, b]) as wellas h = o,
One can note also that Theorem 1.1 implies the results for positive linear
operators discovered earlier [2, 3, 8].

Remark 2.1. It is obvious from the above that if for S C [a, b] 7.(S) <
Ao, and L,(f, x) are bounded linear transformations from Cla, b] to C(S),
then (1.4) is true with C(S) norm instead of C[a, #] norm.
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3. SoME LeEMMAS
We shall need the following lemmas in the proof of Theorem 2.1.

LemMa 3.1, The function

Uo(x ) ul(x) o Uspm (x) \
;/x;f = 2 _:_ a i . -mi ’ 3.1}
(x;1) N N e I e {
u(t) uy(f) T Usml?)
satisfies the inequalities
Ax — 1) << Vix, t) << do(x — 1P, (3.2)

Proof. Since (¢*V]ott) |-, = Ofor k =0,..., 2m — 1 and (&*"V/c*™) |,_, > 0,
(3.2)isvalidforjt — x| < 6 forsome § > 0. Since ;isan E.T.S., V(x,7) >0
for x == ¢, and therefore (3.2) is valid with some constants for every such :.
Compactness of [a, b]\(x — 8, x 4 8) and continuity of V{(x, ¢) limit the
above constants, which completes the proof.

LemMa 3.2. For every ¢ € C@™|a, b] we have
[ @1 < CE)A b1l =+ 1l $2 1) (3.3)

Proof. The norm here is in the sense of Cla, &] and therefore L, . This
result is well known and extensively generalized (see, for example, Ref. 5,
p. 5.

Define for ¢ € C?™[q, b] the “Taylor u polynomial”

2m
U(; x, 1) = 3. Al(d; x) w(t) 3.4
k=0
satisfying
ey = ¢W(x) j=0,..,2m (3.5)
|, ey 2001, 3.5

We may so define the above for u; that are an E.T.S. of order 2m 4+ 1.

LemMmA 3.3. For U(@, x, t) defined by (3.4) and (3.5) we have

[ Ay, x)| < yKN S0+ 1) &k =0,.,2m (3.6)

and

(1) — Ul x, ) < (1 Il + 1 65 )x — ). (

[P}

e
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Proof. The determinant of the linear system given by (3.4) and (3.5) is
(82 V[or¥™) |,_, which is positive, and therefore | A,(¢$, x)| < M(k) 2321 Il #71l,
which by Lemma 3.2 implies (3.6). The inequality (3.7) follows from (3.5)
and (3.6).

LemMmA 3.4.  Under the conditions of Theorem 2.1 we have
~b
| = 0 | o )] < Muhy + M| LI (ra@P™. (39)

Proof. Clearly (where for ¢t << @ a, (t) = a,{a) and for 1 > b «,,(t) =
apa(D))

a7,
[ = 0 et <72 [ o] < A ULCOL G9)

z—Ty

On J, = [a, b]\[x — 7, X -+ 7,] ®n(t) is monotonic, and therefore using
Lemma 3.1 we have

[ =0 o)l = | [ (o= 0" donaet) | < 45

fJ V(x, 1) doygl?) |

<A?(

[} V5,0 o) | + [ V1) o]

a =T p

< A7 Lu(V(x, *), X))

T+Ty,
A7, [T O O | dtgel).

Since V(x, x) = 0 we have, using (3.1) and Condition (3)

| Ly(V(x, ); x) — V{(x, x)| < const. i, .
Also
e e

]

which completes the proof of the lemma.

(v — P | dot)] < 72" [ ") dotna()] = 727 L),

—Tn

4. PROOF OF THE MAIN RESULT

We first prove Theorem 2.1 for functions in C2"[q, b].
1Lemma 4.1. Under the assumptions of Theorem 2.1 we have for ¢ € C*™[a, b]

| L, X) — $(O) < Bty + | LI 72 ¢ 11 + 11 6™ ). (4.1)
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Proof. Recalling the “Taylor u polynomial” (3.4} we write

i Ln(qé'a X) - (i’(x)!
< | Lo; x) — Lo(U($; x, ), x)| 4| LU x, Jx) — Ulg; x, x)i
+ 1 U(d; x,x) — ()| =Ty + Sy + J5.

Using (3.7) and (3.8) consecutively, we have

BB [ x| dae)
<yl @1l + 1l $2 IN(Myhn + M [ Lol | mal)P™

Using (3.4), (3.6) and Assumption (3) of Theorem 2.1, we have J, <
(11l + 1 $27 NSty ¥(K)) s . Clearly from (3.4) and (3.5) U(4, x, x) =
¢(x) or J; = 0. We complete the proof combining estimates for J;, J,,
and J; . To derive Theorem 2.1 from Lemma 4.1, we shall need the following
general lemma of G. Freud and V. Popov [4].

LemMmA 4.2. For an arbitrary feCla, bl and 0 < h <1 there exists
&y, € C¥[a, b] for which we have

and
I $& || < Loh™ wyn(f; B).

-~
:p..
3

N’

Proof of Theorem 2.1. 'We approximate f by ¢, as foilows:

FLAf, x) — ()

< L(fs ) — L{dn, )| + | Lo, ) — u(x)] + | da(x) — f(x)]
=L+5L+1.

We estimate using (4.2) I; < Liwy,(f, B) and I} < || L (%) Lyws{f, &
Using (4.3) and Lemma 4.1, we have

Iy < B+ || Lo()ll 7)™ |l + 1 657 1D
< By + || LGl 7P )US N + Lywonl(f; 1) + Loh™*"won(f, ).

Combining the estimates for I;, I, and 7;, we complete the proof of
Theorem 2.1.
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5. APPLICATIONS TO CONVOLUTION TYPE OPERATORS

A. The first application is actually the one that motivated this research.

Define the operator K, (f, x) by

Ko = [ fe+mdn®. [ dnm=1, D

G0 =(C"" Y o (P kAD. (62)

m o<fri<m r+m

We observe that K,(f, X) = [, f(x + £) dv,(t) where

w0 = (M7 o (27 Y (). (53)

m o<jri<m r 4+ m r

We can also see that for u;(x) = x/
0 i=0,.,2m—1

(2m)! (2,;")_1 J'_w Ay (t) = o™ j = 2m.

u}'(x) - Kn(ui s x) = (54)

As an application of Theorem 1.1 and 2.1 the following theorem is valid
for f with compact support. However, the restriction of having compact
support can be dropped (using the convolution structure) following the proof
of 2.1.

THEOREM 5.1.  Suppose: () K,(f, x), v,(t) and o, are given by (5.1), (5.2),
(5.3) and (5.4); (b) [|dv()l < M < 0, and (¢) vu(t) is monotonic in
R\[—Ac,, Ac,); then

| Kn(f: x) - f(X)\ < M[wzm(f; Un) + U‘fzm . (55)

B. Application with a trigonometric test system.

The De La Vallée Poussin operator is defined (see, e.g., Natanson [7, p. 207)
by:

Valfs X) = oy f_ﬂ f(#) cos® ’__}ﬁ dt o= 3 4 (2’12_”_ T (5.6)
Define
VS, %) = 2Vana(fs X) — Vay(f; %) (5.7)

THEOREM 5.2. For every 2 periodic continuous f(x)

I VO, x) — FOI < CO2 + wy(f, n7V2). (5.8)
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Proof. Let our Tchebicheff system be i, cos ¢, sinz, cos 2t and sin 27,
Elementary calculations yield:

VPu; , x) = ulx) for i = 0, 1, 2 where uy(t) = 1, u,(t) = cos ¢,
and u,(t) = sins; (5.9
and

V3, , x) = ulx) - O(1/n) for i = 3, 4 where u,(t) = cos 2¢ and
u,(ty = sin 2¢. (5.1}

Following (5.7), we have || V2(f, )| < 3|/ The kernel of ¥V is v{2(¢) =
2069,y COST2(t/2) — o,y cOs?%(t/2), and since 1 < 2ap,_3/0, < 4 com-
bined with the estimate cos®® ¢ < cos?™(K/y/n) < [l — (K2/4n)|Pr <2e~K""*
for | t| > (K/+/n) implies that ©@(¢) is negative for | #| > (K/+/n) if K is
{arge enough, our theorem follows Theorem 1.1.

Remark. For VP(f, x) given by
VS, %) = B3) Vinea(fs X) — 2Vaua(fs %) + (1/3) V(£ 1),
@ r N _ £ -3 B (5 11Y
V) = O < K (7% 4 o (£ ) (5.11)
6. MODIFIED BERNSTEIN PGLYNOMIALS

The well known Bernstein polynomials are given by
B.(f, %) = Z ) f (ﬁ) where pu(x) = (7 )Xt — % (6.1)
[WER k=opnk, n Darl’ (k . WMl

We shall define the modified Bernstein polynomial

BE(f, x) = 2By, (f, ¥) — B(f, %) (6.2)

and it will serve as the following nonconvolution application to our thecrem.

%]

THEOREM 6.1. Lef 8 > 0 be a fixed number and fe C[0, 1]; then for
§=1[51-3]

1 BE(f, ) — fOlletsy < K™ + wif; a712). (6.3)
Preof. One can easily verify

%" — B2t Mleon = O@™)  i=10,1,2,3,4 (6.4)
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Since we cannot apply Theorem 2.1 directly to B(f, x) we will apply it to
L, (f, x) given by

Lu(f; %) = 2By(f, X) — B*(/, X) (6.5)

where

B = ¥ s ((ESR) 4 (5) + 50 pad) 66

k=0

where f[—(1/2n)] = f(0) and f{1 + (1/2n)] = f(1). From the above defini-
tion
| B x) — B9l < 3 u(fi ) + 5|/ (5) —F@] @ =

Hjg=so-

For a fixed §, 8 < x < 1 — 8, this implies

BA(x) — B0 < gon(fig) + Crtiflh  67)
Equation (6.7) implies
| L8, X) — X o) << Mn3, i=20,1234 (6.8)

We shall need the following lemma:

LEMMA 6.2. There exists A large enough, such that for | x — (kjn)| =
AP andéd < x <1 —38

Pni(X) = 6 max{ paopid(x) | 1 = —1, 0, I}( pan,2nia(x) = Don.—a(x) = 0).
(6.9)

This lemma will imply the monotonicity of «, ,(¢) for |  — x | = A(1/4/n),
and since ¥, ~ n~2, we will have

1 1
1Ll ) = fGletsr < A (= + o (5 5-)). (6.10)
Using (6.7) and (6.10), we have
1900 — f@ewo < A (g + o (i) + a (£2)), 611)

which implies (6.3).
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Proof of Lemma 6.2. We shall show p,,(x) = 6py,s:{x) only, and other
cases will follow similarly. After simple modifications one sees that we need
only to show

2n
( 2k )
Since p, (x) has its only maximum at x = k/n, it is enough to show 4, >
6p. [k/n) 4= A(1/+/n)]. Using Stirling’s formula, A,,;, > Cvn/(k[r — k1). We
recall Laplace’s formula of the theory of probability {see Ref. 6, p. 14, for
example)

7

2
Drilx) ~ [2ox(1 — x) n] 22 exp [— T(T—n:—ﬁ (g — x) ] 6,135

for |x — (k/n)] = n=a > [/3 in particular for x = {(kjn) + A(1/y 7).
from which (6.12) follows.

Remark. It was pointed out to us by G. G. Lorentz that P. Butzer
considered differences of Bernstein polynomials and their rate of conver-
gence to f(x) [see Can. Math. J. 5 (1953), 559-567]. However, though the
result there treats a more general case, for the operator given herc the
estimate is || BP(f) — fllewn < Mnlo[f”, (1/4/n)] when f"eCl0, 1],
which for § < x << 1 — 8 is not as strong an estimate as (6.3) given in
Theorem 6.1 here.
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